Poetry vs Conda
Developers should use Poetry when working on Python projects that require reproducible environments, complex dependency management, or publishing to PyPI meets developers should learn and use conda when working on data science, machine learning, or scientific computing projects that require managing complex dependencies across different python or r packages. Here's our take.
Poetry
Developers should use Poetry when working on Python projects that require reproducible environments, complex dependency management, or publishing to PyPI
Poetry
Nice PickDevelopers should use Poetry when working on Python projects that require reproducible environments, complex dependency management, or publishing to PyPI
Pros
- +It is particularly valuable for applications with many dependencies, team collaborations to ensure consistency, and modern Python development following PEP 517/518 standards
- +Related to: python, pyproject-toml
Cons
- -Specific tradeoffs depend on your use case
Conda
Developers should learn and use Conda when working on data science, machine learning, or scientific computing projects that require managing complex dependencies across different Python or R packages
Pros
- +It is particularly valuable for ensuring reproducibility by creating isolated environments for each project, preventing version conflicts, and simplifying the setup of tools like Jupyter, TensorFlow, or pandas
- +Related to: python, data-science
Cons
- -Specific tradeoffs depend on your use case
The Verdict
Use Poetry if: You want it is particularly valuable for applications with many dependencies, team collaborations to ensure consistency, and modern python development following pep 517/518 standards and can live with specific tradeoffs depend on your use case.
Use Conda if: You prioritize it is particularly valuable for ensuring reproducibility by creating isolated environments for each project, preventing version conflicts, and simplifying the setup of tools like jupyter, tensorflow, or pandas over what Poetry offers.
Developers should use Poetry when working on Python projects that require reproducible environments, complex dependency management, or publishing to PyPI
Disagree with our pick? nice@nicepick.dev